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Abstract

We describe a new approach to modeling sediment core records, one that uses additive models (AMs)
incorporating a serial correlation structure to model residual autocorrelation. Species assemblages, for example,
are reduced to ordination axis scores that capture major changes in the data through time. Each set of axis scores
is then modeled using an AM, where covariates represent forcing variables (e.g., tree-ring–inferred temperature or
proxies for atmospheric deposition) and/or trend and, where necessary, periodic components. The effect of forcing
variables on species composition through time can be determined via the contribution each covariate makes to the
fitted model, which can be used to separate effects due to competing forcing variables. We illustrate the approach
using data from Kassjön, northern Sweden, and Loch Coire Fionnaraich, northwest Scotland.

There is a growing body of evidence from paleoecolog-
ical studies showing that many remote arctic and boreal
lakes have undergone substantial change in species
composition over the past 100–200 yr. The cause of this
ecological change, often unprecedented in nature and scale,
has recently been attributed solely to global warming,
especially in polar regions (Smol et al. 2005). The observed
changes occur during a period of multiple stressors, and
some studies have shown that the onset of biological
change is concomitant with the first appearance of
spheroidal carbonaceous particles (SCPs) in sediment cores
(Battarbee et al. 2002). SCPs are produced via incomplete
combustion of fossil fuels and are an independent measure
of atmospheric deposition from anthropogenic sources
(Rose 2001).

The similarity and coherency of the observed changes
suggest the effects of multiple forcing factors (drivers of
environmental and ecological change) acting throughout
the Northern Hemisphere, which may vary in space and
time (Smol et al. 2005; Rühland et al. 2008). However,
quantification of the effects of the individual drivers on
community composition is difficult using current statistical
techniques and data sets, which, in turn, hampers our
ability to determine the key driver or drivers of change
(Anderson et al. 2006).

Variance partitioning (Borcard et al. 1992) is a statistical
method used frequently in paleoecological studies to
identify the relative magnitude of the effects of forcing
variables on lake ecosystems through time. For example,
Lotter and Birks (1997) used variance partitioning to show
that prior to restoration efforts, 28% of the variance in
varve thickness observed in a sediment core from Baldeg-
gersee, Switzerland, was attributable to variation in
temperature and precipitation, while just 6% was related
to the eutrophication of the lake. The effects of climate,
agriculture, and urbanization on chironomid communities
from Canadian prairie lakes were investigated by Quinlan

et al. (2002). Climate alone explained substantial propor-
tions (,10% to 72%) of the variance in the chironomid
communities of the seven studied lakes, compared with
much smaller unique contributions of resource use and
urbanization-related factors.

A major drawback of the variance partitioning ap-
proach, however, is that only the total effect of the various
covariates over the time period of interest is given as an
output of the analysis. This precludes asking questions
about when and where the various covariates may be
driving change in the response variable(s). To address these
questions, time-series analysis techniques are required.

In one of the few examples of time-series analysis applied
to paleolimnological data, Cottingham et al. (2000) used
Bayesian Dynamic Linear Models (DLMs) to investigate
changes in variability of algal communities in Lake 227,
Experimental Lakes Area, Ontario, Canada, following
experimental fertilization. The sediments of Lake 227 are
annually laminated, allowing the application of DLMs,
which require regular spacing of samples in time (this is one
of the difficulties in applying classical time-series tech-
niques to paleoecological data; Birks 1998).

In the majority of lakes, however, annually resolved
sediments do not form, either due to bioturbation or a lack
of strong seasonal inputs to the sediments. At best, such
sediments can be sampled regularly with depth, but due to
variations in sediment accumulation rates, each regular
slice of sediment will encompass a variable amount of time,
and therefore the ‘‘distance’’ in time between any two
adjacent samples will also vary. Furthermore, often it is not
possible to analyze every single sediment slice or annual
varve, either due to financial constraints or impracticalities
of counting the number of samples or applying analytical
techniques. The end result is an irregularly sampled time
series for which classical time-series techniques are inap-
propriate (Birks 1998).

Here, we present an alternative modeling approach
based on the use of flexible additive models that solves
some of these problems when fitting models to paleolim-*Corresponding author: gavin.simpson@ucl.ac.uk
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nological data. We demonstrate the way in which these
models can be used to answer the critical questions of how
much, and when, is climate a significant driver of trends
and patterns in the observed data.

Methods

Additive models—Additive models are a nonparametric
form of regression in which the sum of regression
coefficients 3 explanatory variables of a linear regression
is replaced by a sum of arbitrary smooth functions of the
explanatory variables. This allows the shape of the
relationship between the response and the explanatory
variables to be determined from the data themselves, rather
than being assigned a prescribed functional form (e.g.,
linear or quadratic). As a result, additive models are able to
model local features of the relationship between the
response and the covariates; the effect of the covariate is
allowed to vary across its range.

Formally, an additive model of the type discussed here
has the following form

yi~az
Xk

j~1

fj xji

� �
zei, e*N 0, s2L

� �
: ð1Þ

where fj(xji) is a centered smooth function of the jth
explanatory variable, i 5 1, . . . , n, is the number of
observations, and a is a constant representing the intercept.
The errors, ei, are assumed to have a Gaussian distribution
with mean 0 and variance s2L. In the case of independent
observations, it follows that the correlation matrix will equal
the identity matrix, L 5 I. Where observations are not
independent, a correlation structure may be assumed for L,
and any additional model parameters required are estimated
alongside the other model parameters. The degree of
smoothness (or wiggliness) of fj is controlled through the
use of penalized regression and, in the implementation used
here, is determined automatically using a generalized cross-
validation (GCV) routine (Wood 2006).

For regularly observed sediment time series, autoregres-
sive (AR), moving average (MA), or a combination of the
two (ARMA) models can be used to parameterize L. The
order 1 autoregressive model, denoted AR(1), is the
simplest and often the most useful autoregressive model
(Pinheiro and Bates 2000) for such situations. These
correlation structures are not appropriate for the irregular
time series most often encountered in paleolimnological
studies. The AR(1) structure can be generalized to
continuous time to allow for varying temporal differences
between analyzed sediment samples, and in this case, it is
known as the continuous time AR(1), or CAR(1),
structure. It can be shown (Pinheiro and Bates 2000) that
CAR(1) is equivalent to the exponential spatial correlation
structure for a one-dimensional position vector. Other
spatial correlation structures may also be employed to
parameterize L, such as the Gaussian, spherical, or rational
quadratic structures, though these all have a superficially
similar form, and the end result is often the same regardless
the structure used.

Here, we use the CAR(1) correlation structure for its
simplicity and because it directly relates to the more
common AR(1) structure in its definition. In the CAR(1)
structure, the correlation function, h(?), between two
observations is

h s, wð Þ~ws, s§0, w§0 ð2Þ

where s is the temporal distance between observations. The
single parameter w is estimated as part of the model fitting.

Fitting a nonlinear trend to paleolimnological data
involves including a smooth function for the date of the
sample in the additive model

yi~azf dateið Þzei, e*N 0, s2L
� �

, ð3Þ

and the presence or absence of a trend in the data can be
determined via a likelihood ratio test (LRT) between Eq. 3
and a model including the intercept, a, only. Information
statistics, such as Akaike’s information criterion (AIC) or
the Bayesian information criterion (BIC), may also be used
to assess whether the presence of a trend in the data is
supported; however, the different models should be
estimated using the full maximum likelihood to ensure
correct testing of models with different fixed effects.

The need to include the correlation structure can likewise
be determined using an LRT or via AIC (or BIC) by
comparing a model fitted using the structure with a model
using L 5 I, where I is the identity matrix and indicates
independence of observations. The latter model is a simpler
model with fewer parameters, and, in the case of the AR(1)
or CAR(1) structures, we are testing whether w is
significantly different from 0. Restricted maximum likeli-
hood (REML) should be used to fit the models when
performing these tests, and furthermore, as 0 is on the
boundary of allowed values for w, the p-value may be
anticonservative.

We are not restricted to fitting models to identify trends
in paleolimnological data using these techniques. Indeed,
far more interesting questions may be addressed where
independent data on forcing variables are available
covering the same time period as the observed samples
(Leavitt et al. 2009). For example, given independent
temperature measurements for a recent sediment core
sequence covering the past 1–200 yr, one could model the
effect of temperature variations on species composition
recorded in the sediment samples. The contribution to the
fitted value of the explanatory variable (temperature in this
example) for each sediment sample can be extracted,
providing a time series of the effect of that explanatory
variable on the response. Because the smooth functions of
the explanatory variable (fj(xji)) need not be linear and are
local, the magnitudes of the effect of the explanatory
variables can vary through time, depending on the
relationship between the variables and the response.

Where more than one independent forcing variable is
available and included in the model, the fitted response can
be partitioned into the contributions of the individual
forcing variables for each sediment sample. This partition-
ing is possible due to the simple, additive nature of Eq. 1.
The end result of this partitioning is two or more time series
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of the varying magnitudes of the effects of the forcing
variables, from which, the individual effects of the forcings
may be elucidated.

Additive mixed models—The computational approach
used here uses a formulation of Eq. 1 that is embedded in a
linear mixed-effects framework (Ruppert et al. 2003; Wood
2006). A mixed-effects model is one that contains both
fixed and random effects. Fixed effects are the standard
representation of variables in a linear model, such as the
effects of a treatment variable or explanatory variable on
the response. Grouping structures may lead to additional
sources of variability in the data. This additional variability
may be described using a random effect.

The additive mixed model (AMM) version of Eq. 1 may
take the following form

yi~Xibz
Xk

j~1

fj xji

� �
zZibzei ð4Þ

where yi is the univariate response, b is a vector of fixed
parameters, Xi is the ith row of the model matrix of fixed
effects, which includes a 5 b0, the fj values are smooth
functions of the covariates as before, Zi is the ith row of the
model matrix of random effects, b is a vector of random
effects coefficients, which are assumed to be normally
distributed with mean zero and unknown covariance
matrix yh and parameter h, and e , N(0, s2L) represent
the model residuals (Wood 2006).

Equation 4, unlike the simple additive models described
previously, does not require the concept of penalized
regression for model fitting. Instead, it is possible to
formulate the penalized smoothers of the additive model as
components of the mixed model formulation (Eq. 4)
(Ruppert et al. 2003; Wood 2006). Each smooth function
(fj) is separated into an unpenalized component (the fixed
effect), which is included in Xib, and a penalized component
(the random effect), which is included in Zib. The random-
effects component is assumed to be normally distributed,
with mean 0 and one or more unknown variances to be
estimated. Full details of the AMM formulation used here
are given in Wood (2006, 16.6). Durbán et al. (2005)
provide additional, practical advice on implementing
models of this type.

In this AMM formulation, the model is actually a linear
mixed model, albeit one that allows for smooth functions of
the covariates, and therefore the usual methods of
statistical inference for linear mixed models apply. As
such, likelihood ratio tests and AIC (or BIC) can be used
for model comparison in the same manner as that described
previously (Pinheiro and Bates 2000; Ferguson et al. 2008).

The additive model approach described here is similar to
the nonparametric regression-based approach used by
Ferguson et al. (2008) to model changes and detect trends
in several limnological parameters in Loch Leven, Scot-
land. In the approach described in this study, we use
CAR(1) correlation structures to cope with irregularly
sampled data and smoothers based on regression splines,
not locally linear smooths (Ferguson et al. 2008).

Study sites

Kassjön—Kassjön is a small, dimictic lake in northern
Sweden. It is ,0.23 km2 in area, and it has a maximum
depth of 12.2 m and a mean depth of 5.5 m (Anderson et
al. 1995). From mid-November to late April or early May,
the lake is ice covered and thermally stratifies following ice-
out. Kassjön is a soft-water, mesotrophic lake that has
experienced a long history of human disturbance in the
catchment resulting in marked increases in planktonic
diatom productivity between A.D. 1300 and the late 19th
century (Anderson et al. 1995).

Only brief descriptions of sample preparation and
analysis are provided here; more detailed descriptions can
be found in Anderson et al. (1995). The sediment core was
cut into 5-yr (varve) blocks, and an amalgamated sample
was prepared for diatom analyses using standard methods.
Between 350 and 400 diatom valves were counted per
sample. The core sequence analyzed here covers the period
445 B.C. to A.D. 445, and dating was provided via varve
counting (Anderson et al. 1995), represented by 177
contiguous samples. In total, 228 diatom taxa were found
in the sediment core sequence studied here.

Tree-ring–inferred temperatures for the period of interest
were obtained using the regional curve standardization
(RCS) methodology applied to a 7400-yr tree-ring chro-
nology for northern Swedish Lapland (Grudd et al. 2002).
The RCS methodology emphasizes year-to-year and
decadal to century timescale variability (Grudd et al. 2002).

Loch Coire Fionnaraich—Loch Coire Fionnaraich (LCFR)
is a small, upland, polymictic loch located in northwest
Scotland at an altitude of 236 m above sea level. The loch
has a maximum depth of 14.5 m and covers an area of
0.093 km2. The catchment of the loch is characterized by
blanket peats and acid heathland. The loch is oligotrophic,
with low alkalinity (16.4 meq L21) and present-day pH of
5.9 (Pla et al. 2009).

A 25-cm-length core was retrieved from Loch Coire
Fionnaraich in May 2001 using a gravity corer in ,14-m
water depth (Pla et al. 2009). The core was extruded at
2-mm intervals and analyzed for diatom and spheroidal
carbonaceous particles (SCPs) using standard methods
(Rose 1990; Battarbee et al. 2001). Temperature data from
the Central England Air Temperature series (CET) were
used as an independent record of air-temperature varia-
tions in the Loch Coire Fionnaraich catchment, while SCP
accumulation rate (No. particles cm22 yr21) was used as a
surrogate for atmospheric deposition loading from anthro-
pogenic sources to the loch. The period covered by the CET
series is represented by 74 samples from the LCFR
sediment core. In total, 215 diatom taxa were present
across the 74 samples from LCFR, and all taxa were used
in the statistical analyses presented here. SCP data were
interpolated linearly from the observed levels to provide a
measure of SCP accumulation rate for each observation
that CET and diatom data were available. The sediment
core data and the applicability of the CET to LCFR are
discussed in more detail in Pla et al. (2009). The data used
here differ slightly from those of Pla et al. (2009) in the use

Deciphering the effect of climate change 2531



of Hellinger-transformed diatom data and in not pre-
smoothing the raw CET time series.

Statistical analysis—The diatom data from both Kassjön
and LCFR were Hellinger transformed prior to analysis
with principal components analysis (PCA) (Legendre and
Gallagher 2001). This preserves the Hellinger distances
between samples in the resulting PCA, which is a
dissimilarity coefficient that has been shown to have good
properties for ecological data (Legendre and Gallagher
2001). In both data sets, two PCA axes were identified as
explaining significant proportions of the variance in the
species data when compared to the broken stick (null)
distribution (Jackson 1993) and via inspection of scree plots
of the axis eigenvalues. These axes were retained for
subsequent analysis. PCA was performed using the vegan
package (Oksanen et al. 2008) for the R statistical software
(R Development Core Team 2009). AMMs of the form
described previously were individually fitted to the PCA
axis 1 and axis 2 scores for both sites using the mgcv
package (Wood 2004, 2006) for R. All other statistical
analyses were performed using standard R functions.

Preliminary exploratory data analysis (EDA) of the
Kassjön diatom and RCS tree-ring temperature data
suggested that the visible trends in the diatom PCA axis 1
and 2 scores were unlikely to be explained wholly by the
RCS data. Furthermore, the results from application of the
autocorrelation function (ACF) to the PCA axis scores
revealed significant autocorrelations at lag 5, and higher
multiples of 5, suggesting periodicity on the order of
,25 yr. In order to model variance in these series
sufficiently well, so that statistical inference on the effect
of temperature on diatom species composition was as
robust as possible, we included sediment sample date and a
dummy variable for periodicity as explanatory variables in
the models. These two variables allowed the model to fit the
observed trend and periodicity in the PCA axis scores so
that the effect of RCS temperature could be determined.

For LCFR, preliminary EDA of the available data and
the results of Pla et al. (2009) suggested that the diatom
PCA axis 1 scores were strongly related to SCP accumu-
lation rate. Therefore, initial model fitting proceeded using
the CET and SCP data only, without an additional
covariate for the trend through time. The diatom PCA
axis 2 scores at LCFR showed no obvious sign of trend or
periodicity, and thus model building proceeded as for the
axis 1 scores, using only smooth functions of CET and SCP
accumulation rate. It is likely that measurement error is
present in the covariates in both the examples presented
here. Like most other statistical modeling techniques, the
models described do not take into account this source of
error.

Likelihood ratio tests and AIC statistics were used to
select the most parsimonious model for each of the diatom
PCA axis score series. The contributions of the individual
model covariates to the fitted values of the response were
calculated by decomposing the fitted values into their
component terms using the bases of the fitted smooth
functions and the corresponding coefficients for each spline
term, excluding the intercept term. In practice, these

contributions are derived using function predict.gam
argument type 5 ‘‘terms’’ in the function predict.gam of
the mgcv package.

Results

Kassjön—Time-series plots of the diatom PCA axis 1 and
2 scores for Kassjön are shown in Fig. 1. These two axes
account for ,9% of the variance in the transformed diatom
data, a high proportion given the high number of taxa (n 5
228) and the high degree of variability exhibited in the
community data. Comparison with the broken stick
distribution suggests that these two PCA axes represent
the signal in the diatom data, and subsequent axes explain
no more variance than expected under the null distribution.

The first half of the series of PCA axis 1 scores for
Kassjön exhibits a moderate increasing trend to ca. 250
B.C., followed by decreasing scores, while scores in the latter
half of the sequence remain constant, with a slight
increasing trend observed in the last 100 yr of the record
(Fig. 1a). The main feature of the data, however, is the
marked periodicity that is present throughout the period,
but that is most pronounced in the first half of the core, as
shown by the regular spikes in the axis scores that occur
every five samples. There is a large amount of variation in
the size of these peaks, and the largest excursions are found
in the first half of the core sequence.

The PCA axis 2 scores for Kassjön (Fig. 1) show a
stronger trend but have lower variation than the axis 1
scores. A decline in axis scores is observed up to A.D. 300,
and a slight rise in scores is apparent in the last 75 yr of the
record. Although not as apparent as in the axis 1 scores, the
regular five-sample periodicity is also present in the axis 2
scores (determined from an ACF plot of the record, not
shown), although the variation about the trend is consid-
erably smaller than for the axis 1 scores. It is also worth
noting that variation in the diatom communities on this
second PCA axis is smaller than on the first, as evidenced
by the smaller range in axis scores (compare the range on
the y-axes of the two panels in Fig. 1).

AMMs including components for the trend, periodicity,
and RCS temperature were fitted to the Kassjön PCA axis
1 and 2 scores. Trend and periodicity components were
required to adequately model the major patterns in the
observed series as RCS temperature appeared to be most
correlated with small-scale variations over and above the
trends and periodicities observed in Fig. 1. Modeling the
series in this manner allows the model to fit features of the
data and explain residual variation that may affect
statistical inference when assessing the effect of RCS
temperature if left unaccounted for. The data for Kassjön
were sampled on a regular 5-yr span, and, as such, we
modeled autocorrelation in the series using the simpler
AR(1) structure. Models were fitted with and without this
structure and were compared using likelihood ratio tests
and AIC.

The final fitted model for the axis 1 scores from Kassjön
did not include a smooth function for RCS temperature
because it was deemed insignificant on the basis of
assessment by likelihood ratio tests and AIC. While
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interesting in their own right, because we are concerned
with illustrating the additive modeling approach in
deciphering the effects of forcing variables, including
temperature, on aquatic ecosystems, we do not discuss this
model further.

All three covariates contributed significantly to the
model fitted to the PCA axis 2 scores for Kassjön (Table 1),
although the fitted smooth function for RCS temperature is
only marginally significant at the 95% level. As we are
interested in the effect of temperature on the diatom
communities in the Kassjön core, we retain this term in the
model.

An AR(1) structure for the model errors was not
supported by a likelihood ratio test (p 5 1), and the two
models provided effectively the same fit to the observed
data. Therefore, the simpler model (without the AR
structure) was retained. The fitted smooth functions for
trend, periodicity, and RCS temperature are shown in
Fig. 2. The three panels are drawn on the same scale, and it
is immediately apparent that the smooth functions for the
trend and periodic components exhibit more variation
(greater range), having larger absolute contributions to the
fitted response, than the smooth function for RCS
temperature, which indicates a greater effect for these two
components on diatom PCA axis 2 scores.

The fitted smooth function for the trend follows closely
the exploratory locally weighted scatter plot smoothing
(LOESS) smoother fitted to the observations in Fig. 1 (as
one might expect). The smooth function for period

indicates that the third sample in the five-sample period-
icity leads to higher, positive PCA axis 2 scores, while either
side of this peak, axis scores fall back to around zero or are
slightly negative in general.

The smooth function for RCS temperature shows a
slightly nonlinear relationship between RCS temperature
and PCA axis 2 scores. There is much uncertainty in the
shape of the curve as evidenced by the wide confidence
bands (Fig. 2c), although at lower temperatures, the
confidence bands do not include 0, indicating a significant
effect of temperature on axis 2 scores. The effect includes 0
for the upper half of the observed temperature gradient
during the period covered by the Kassjön core, and as such,
the model indicates an effect of temperature on the diatoms
only at the lowest observed temperatures.

This is clearly reflected in the time series of the
contribution (or effect) of RCS temperature on the diatom
PCA axis 2 scores (Fig. 3), which shows significant
contributions during the two extreme cold events that
occurred around 300 B.C. and ca. 100 B.C. (Fig. 3c). The
effect of RCS temperature on the diatoms is generally
insignificant during the more stable, warmer period in the
latter half of the record. The fitted model (Fig. 4) deals well
with the change in level in the PCA axis 2 scores after ca.
100 B.C., but substantial variability around this level
remains unexplained.

Loch Coire Fionnaraich—Time-series plots of the diatom
PCA axis 1 and 2 scores for LCFR are shown in Fig. 5.

Fig. 1. Time series of (a) axis 1 and (b) axis 2 scores for the PCA of the Hellinger-
transformed diatom data from Kassjön. The number in brackets on the y-axis label is the %
variance explained by each axis. The thick lines are LOESS smoothers fitted through the
observations to highlight trends in an exploratory manner.
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These two axes account for 17.2% of the variance in the
transformed diatom data. Again, this is quite a high
proportion given the high number of taxa (n 5 215).
Comparison with the broken stick distribution suggests

that these two PCA axes represent the signal in the LCFR
diatom data, and subsequent axes explain no more variance
than expected under the null distribution.

A strong, declining trend in the LCFR diatom PCA axis
1 scores is present from approximately 1800 to 1850
(Fig. 5). A second, declining trend is apparent around 1950.
Prior to 1800 and after the two periods of declining PCA
axis 1 scores, relatively stable diatom communities were
observed. The overall pattern is towards lower PCA axis 1
scores after 1800.

PCA axis 2 scores do not show such a striking trend
compared to the axis 1 scores. The observed pattern
suggests some quasi-periodic component to the diatom
community, with negative PCA axis 2 scores prior to 1700
and around 1900, and a sharp decline to lower scores again

Table 1. Model summary for the additive mixed model fitted
to the Kassjön diatom PCA axis 2 scores. EDF 5 effective degrees
of freedom for the regression spline. Ref. df 5 reference degrees of
freedom used to compute the p-value.

Covariate EDF Ref. df F p-value

Trend 7.329 7.829 8.453 1.84 3 1029

Periodicity 2.714 3.21 6.43 0.000269
RCS temperature 2.042 2.542 2.900 0.041158

Fig. 2. The fitted smooth functions for (a) trend, (b) periodicity, and (c) RCS temperature
from the final AMM for the Kassjön PCA axis 2 scores. The gray bands are approximate 95%
pointwise confidence intervals on the fitted functions. The tick marks inside the panels on the
x-axis show the distribution of observed values for the two covariates. The numbers in brackets
on the y-axis (7.33, 2.71, and 2.042 for trend, periodicity, and RCS temperature, respectively) are
the effective degrees of freedom for each smooth function.
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Fig. 3. The contribution of (a) trend, (b) periodicity, and (c) RCS temperature to the fitted
diatom PCA axis 2 scores for the final Kassjön model. The gray band is an approximate 95%
pointwise confidence interval on the contribution. Where the band includes the dashed zero line,
the contribution of the covariate is not statistically significantly different from the intercept.

Fig. 4. Observed and AMM fitted values for PCA axis 2 scores for the Kassjön core. The
gray band is an approximate 95% pointwise confidence interval on the fitted values.
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in the uppermost samples of the core. The scale of
variability between samples is much greater on axis 2 than
axis 1.

AMMs including smooth functions of the SCP accumu-
lation rate and CET data as the sole covariates were fitted
to both sets of axis scores, with and without a CAR(1)
correlation structure for L. The CAR(1) error structure was
used for the LCFR data because the sediment core samples
were irregularly distributed in time.

The AMM fitted to the PCA axis 1 scores included a
significant smooth term for SCP accumulation rate (p #
0.0001) and a borderline significant smooth function for
CET (p 5 0.057). The CAR(1) error structure was not
required, as assessed by a likelihood ratio test comparing
AMMs with and without the structure (p 5 0.79). AIC and
BIC also favored the AMM without (AIC 5 299.68, BIC
5 285.85) rather than with (AIC 5 297.75, BIC 5
281.62) the CAR(1) structure. Dropping the CAR(1) error
structure reduced the p-value for the CET smooth function

by a small amount, though the interpretation remains the
same; i.e., the effect of temperature on the diatom PCA axis
1 scores in LCFR is marginally significant. We retain this
term in the model because our aim is to compare the effects
of temperature and atmospheric deposition loading on the
diatom communities of LCFR. Table 2 shows the model
summary for the final AMM for the PCA axis 1 scores.

The fitted smooth functions for CET and SCP accumu-
lation rate are shown in Fig. 6. The two panels are drawn
to the same scale and show that variation in diatom PCA
axis 1 scores with SCP accumulation rates is much greater
than variation for CET. The smooth function for CET is
linear, using one effective degree of freedom (EDF). The
fitted relationship between diatom PCA axis 1 scores and
SCP accumulation rate is nonlinear, using 2.97 EDF, and
this suggests that the effect on the scores is smaller at high
SCP accumulation rates than at low rates. For SCP
accumulation rates between 30 and 40 n cm22 yr21, PCA
axis 1 scores do not vary as the SCP accumulation rate
increases for example.

Figure 7 shows the fitted values from the final AMM
overlain on a plot of the observed PCA axis 1 scores. This
model explains ,74% of the variance in the diatom PCA
axis 1 scores. The model captures well the changes in
diatom community composition from 1900 onward, but it
performs less well for the earlier decline in PCA axis 1
scores around 1800. The model also systematically under-
estimates the axis scores prior to 1800. Despite the lack of
fit in these two periods, the model does exceptionally well

Fig. 5. Time series of (a) axis 1 and (b) axis 2 scores for the PCA of the Hellinger-
transformed diatom data from Loch Coire Fionnaraich (LCFR). The number in brackets on the
y-axis label is the % variance explained by each axis. The thick lines are LOESS smoothers fitted
through the observations to highlight trends in an exploratory manner.

Table 2. Model summary for the additive mixed model fitted
to the LCFR diatom PCA axis 1 scores. EDF 5 effective degrees
of freedom for the regression spline. Ref. df 5 reference degrees of
freedom used to compute the p-value.

Covariate EDF Ref. df F p-value

CET 1.00 1.50 3.47 0.0495
SCP 2.95 3.45 56.70 #2 3 10216
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in explaining the observed changes in community compo-
sition.

The contributions to the fitted values of the two
covariates (CET and SCP) are shown in Fig. 8. The
contribution to fitted axis scores is small for CET, as
suggested by the borderline significance of the fitted smooth
function. Between the start of the record and ,1800, the
main contribution of CET appears to be to increase diatom
axis 1 scores, and from the shape of the fitted model (Fig. 7),
it is clear that the smooth function for CET explains the
stochastic variation about the overall fitted trend in diatom

PCA axis 1 scores. This overall trend in the axis scores is
explained predominately by variation in the SCP accumu-
lation rate (Fig. 8b). There is some evidence for a combined
effect of CET and SCP accumulation rates on axis scores in
the uppermost samples of the LCFR core, as indicated by
the trend toward lower and negative diatom scores suggested
by the CET effect, while SCP accumulation rate variation in
this part of the core acts to increase scores as atmospheric
deposition loads to LCFR decline.

The models fitted to the PCA axis 2 scores were not
significant, and the approximate 95% confidence intervals

Fig. 6. The fitted smooth functions for (a) CET and (b) SCP accumulation rate from the
final AMM for the LCFR PCA axis 2 scores. The gray bands are approximate 95% pointwise
confidence intervals on the fitted functions. The tick marks inside the panels on the x-axis show
the distribution of observed values for the two covariates. The numbers in brackets on the y-axis
(1 and 2.95 for CET and SCP, respectively) are the effective degrees of freedom for each smooth.
A value of 1 indicates a linear function.

Fig. 7. Observed and AMM fitted values for PCA axis 2 scores for the LCFR core. The gray
band is an approximate 95% pointwise confidence interval on the fitted values.
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for the smooth functions of SCP accumulation rate and
CET included 0 throughout the range of each covariate,
indicating no relationship between the covariates and the
response. Therefore, we do not consider the PCA axis 2
scores for LCFR further.

Discussion

Kassjön—Additive modeling of the precultural diatom
assemblage of Kassjön indicated small, but significant,
direct climate effects on the littoral zone during short-term
cold periods arising from changes in benthic diatom
composition along PCA axis 2. While the direct effects of
temperature on the diatom community of the lake are
small, additive modeling provides useful additional infor-
mation on where in time diatom species composition was
changing, information that variance partitioning would not
have provided. The results suggest that the diatom
community of Kassjön was reasonably resilient to natural
fluctuations in temperature. Modest warming events, if
anything, appeared to support stable diatom assemblages,
while species composition changed only during extreme
cold periods.

Importantly, direct effects of climate (temperature) on
diatom species composition were shown to be small and not
associated with the main structural changes in community
composition as expressed on the PCA axis 1 and 2 scores.
This does not preclude indirect, possibly lagged, effects of
climate on the diatoms in this period in Kassjön, however

(Anderson et al. 1995). Indeed, the major diatom changes
on PCA axis 1 appear to reflect fluctuating inputs of
nutrients and levels of dissolved organic carbon driving
changes in planktonic diatom species such as Asterionella
formosa and Aulacoseira tenella (N. J. Anderson unpubl.).

Loch Coire Fionnaraich—The trend in the PCA axis 1
scores is associated with declines in the typically sediment-
welling species Fragilaria virescens var. exigua and the
pedunculate species Cymbella spp. and Gomphonema spp.,
and increases in several species in the genus Eunotia. These
changes are indicative of a shift in the source of diatom
productivity, from deep-water sediments to shallower rock-
dominated habitats (Pla et al. 2009).

The major trend and patterns in the LCFR PCA axis 1
scores are strongly related to the increase and subsequent
decline in atmospheric deposition (represented by SCP
accumulation rate). Superimposed upon this pollutant
trend, there is a small, but significant effect of climate
throughout the observed sequence. These results concur
with those of Pla et al. (2009), and yet the identification of
subtle climate effects on diatom community composition
and the ability to compare the magnitude of effects of the
two driving factors are two important findings that will add
substantial weight to the authors’ conclusions, namely, that
atmospheric deposition, possibly through nutrient enrich-
ment, is a major driver of ecological change in LCFR.

The role of atmospheric deposition in driving change in
remote ecosystems has been documented elsewhere (Wolfe

Fig. 8. The contribution of (a) CET and (b) SCP accumulation rate to the fitted diatom
PCA axis 2 scores for the final LCFR model. The gray band is an approximate 95% pointwise
confidence interval on the contribution. Where the band includes the dashed zero line, the
contribution of the covariate is not statistically significantly different from the intercept.
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et al. 2001), and the contribution of atmospheric deposition
to the changes observed elsewhere in the Northern
Hemisphere (Smol et al. 2005) could be investigated more
thoroughly using additive modeling techniques.

Additive models—The results presented here illustrate the
power of the additive model framework for fitting
statistical models to paleolimnological data, which allows
the effects of covariates through time to be evaluated,
separated, and compared. Appropriate correlation struc-
tures, such as AR(1) and CAR(1), allow models to be fitted
to both regular and irregular sediment core time series, and
they can account for temporal autocorrelation in model
residuals when evaluating the effects of covariates.

In the two examples shown, the correlation structures were
not required in the final models, presumably because auto-
correlation within the times series was modeled by covariates
already in the model. This will not be the case for all studies.
When autocorrelation remains unmodeled by the covariates,
a suitable correlation structure is required to correctly
determine the statistical significance of the model covariates.

Care must be taken when interpreting the contribution
of covariates plots such as those shown in Figs. 3 and 8,
however. The y-axis on such plots describes the contribu-
tion of each covariate to the fitted response excluding the
intercept; hence, they are centered on 0. Where the
contribution for an individual covariate changes in time
along the x-axis, the change in that covariate is associated
with change in the response (here the diatom axis scores).
In the LCFR example, we see that the contribution of SCP
accumulation rate to the fitted values of the response is
positive (Fig. 8b), but constant, between 1660 and 1850,
with the 95% pointwise confidence interval bounded away
from zero. In this period, low or zero SCP values are
observed. As deposition to the loch increases post-1850, the
SCP values begin to change rapidly, and this is associated
with a change in the diatom PCA axis 1 scores. It is during
this period that we observe a significant effect of
atmospheric deposition on the diatom assemblage, where
the contribution of the covariate changes rapidly. Contrast
this with the contribution of CET to the fitted values of the
model (Fig. 8a). For most of the period covered by the
sediment core, the contribution of CET to the fitted values
is small and not much different from the mean response
(the intercept component), and there is little systematic
change in the contribution of CET to the fitted values.
However, the contribution of CET periodically takes large,
positive values, suggesting a stochastic effect of tempera-
ture that is related to fluctuations in the axis 1 scores about
the intercept. Overall, there is a trend in the contribution of
CET toward negative contributions; however, this is small
in magnitude compared the magnitude of change in the
contribution of SCP, reflecting the lesser importance in
describing the observed patterns in the diatoms in Loch
Coire Fionnaraich.

Furthermore, it should be noted that the confidence
interval in these plots is pointwise, not simultaneous, and is
computed for each observation independent of the others.
As with correcting for multiple comparisons in statistical
testing, it is important not to overinterpret individual

observations where the confidence interval only slightly
excludes zero; for a sequence of 100 observations, we could
expect five to have a 95% pointwise confidence interval
bounded away from zero purely by chance. Large
deviations of the contribution away from zero, relative to
the magnitude of the confidence interval, for individual
points are deserving of interpretation.

The AM framework has two main advantages over
traditional time-series techniques (such as ARMA models
or DLMs) and the variance partitioning approach that has
proved popular in paleolimnology. The first advantage of
AMs is that they provide a time series of the contribution
of covariates to the fitted response instead of a single
statistic for the amount of variance explained by each
covariate, as is generally reported from variance partition-
ing analyses. Furthermore, this time series of contribution
or effect has an associated standard error that allows
confidence bands on the contribution to be created, leading
to more formal statistical assessment of the model
covariates than is possible with variance partitioning.

A time series of effect or contribution of a covariate is,
however, still possible with variance partitioning. Using a
single covariate in the constrained ordination model results
in axis 1 scores that reflect the effect of the covariate on the
species assemblages, and these can be plotted as a time
series to produce a similar diagram to those shown in
Figs. 3 and 8. Formal statistical analysis of this variance
partitioning–based contribution is not possible, however, in
the manner shown in Figs. 3 and 8.

A second advantage of the AM approach is that it is firmly
rooted in the familiar regression framework. Additive models
are now commonly used in ecological research to model
species response curves to environmental variables or in
spatial assessments of the effects of climate change on species
presence or absence to give but two examples (Yee and
Mitchell 1991). The utility of mixed models for ecological
research is slowly entering the main stream (Zuur et al. 2007,
2009), and only a reasonable familiarity with the concepts
and nomenclature is required in order to fit these models
using modern, freely available computer software. However,
as with any statistical approach, it is important for the
implications of applying AMMs to data to be fully
appreciated. In contrast, DLMs, while being mathematically
very similar to the additive model, are unfamiliar to most
ecologists, and the nomenclature (Kalman filtering, etc.) is
like a foreign language to many.

One disadvantage of the AM approach is that it is not as
simple to provide predictions outside the range of the
observed covariates (forecasting) as it is with DLMs. This is
because the splines used in the smooth functions that are
central to additive models are chosen to fit the observed
data and may behave erratically outside these bounds. This
is a particular problem when attempting to forecast future
observations from a model fitted to sediment core
observations such as the study of Cottingham et al.
(2000), where DLMs proved to be particularly useful in
this regard.

A further disadvantage is that currently available species
data need to be reduced a priori to ordination axes using
unconstrained ordination techniques before additive mod-
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els can be fitted to the response. Models are also fitted
independently to each ordination axis in turn. In this
regard, the approach described here is similar in spirit to
the so-called indirect ordination approach popular before
the development of constrained ordination techniques.
Recent developments with vector generalized additive
models (VGAMs) (Yee and Mackenzie 2002) and con-
strained additive ordination (CAO) (Yee 2004, 2006) may
allow multivariate versions of the models fitted here to be
applied in the future in a manner similar to variance
partitioning with constrained ordination yet retain the
additive model concept.

One could also choose to fit the models described in the
results section here to constrained ordination axes instead
of the PCA axes used here. However, without evidence to
the contrary, the ability to extract the major patterns of
variance in species assemblage data independently of the
available explanatory variables for subsequent analysis is
preferable to a situation where only the variation in the
species data that can be ascribed to covariates is extracted
and then modeled using the techniques described here.
Extracting only the variance that can be explained by
available covariates allows the effect of the covariates to be
modeled through time on the part of the species data that
they can explain, and this variance may not be included on
the first couple of unconstrained ordination axes in the
approach taken in this study. However, it is important to
demonstrate that the effects of any covariates are leading to
important shifts in species composition, and these should
be related to the main patterns of variation in the species
data. In practice, both the indirect approach used here and
a direct approach using constrained ordination axes (or
with CAO in the future) may be desirable, as is the case
with ordination in general.

Additive modeling of paleoecological data represents a
robust approach to investigate the causes of ecological
change in lake ecosystems. The approach has wide
applicability and represents a powerful technique that
may be applied to decipher the relative magnitudes of
forcing factors that are hypothesized to be the cause of the
recent changes in species composition observed in many
remote, Northern Hemisphere lakes.

Acknowledgments
We thank Veronica Gahlman and Ingemar Renberg for

permission to use the diatom data from Kassjön; and Roger
Flower, Neil Rose, Sergi Pla, and Don Monteith for the Loch
Coire Fionnaraich diatom and spheroidal carbonaceous particle
data. G.L.S. was supported while undertaking this study through
the European Union Sixth Framework Integrated Project Euro-
limpacs (GOCE-CT-2003-505540).

References

ANDERSON, N. J., H. BUGMANN, J. A. DEARING, AND M.-J.
GAILLARD. 2006. Linking palaeoenvironmental data and
models to understand the past and to predict the future.
Trends Ecol. Evol. 21: 696–704.

———, I. RENBERG, AND U. SEGERSTRÖM. 1995. Diatom produc-
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